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Novel States in Taylor-Couette 
Flow Subjected to a Coriolis Force 

Li Ning,  1 Guenter Ahlers, l and David S. Cannell 1 

We present experimental results for Taylor-Couette  flow subjected to a Coriolis 
force. We used an apparatus consisting of two concentric cylinders with the 
inner one rotating, and with a radius ratio near 0.75. It was mounted with its 
axis horizontal on a table which rotated with angular velocity f2 about a verti- 
cal axis. For sufficiently low f2, the first bifurcation upon increasing the inner- 
cylinder rotation rate co was to tilted vortices. With further increase in co this 
bifurcation was followed by a secondary one to time-periodic tilted vortices. The 
two bifurcation lines met at higher s The initial bifurcation then became one 
to tilted traveling vortices. For even larger values of ~,  the flow immediately 
above the initial transition was disordered, and for sufficiently large f2 the initial 
bifurcation was to a featureless turbulent state. We studied these transitions 
with three different outer cylinders. Two had symmetric spatial ramps 
terminating both ends of a straight section to reduce the effect of the rigid, non- 
rotating ends, and one had no ramps. The transition to featureless turbulence in 
the apparatus with ramps became hysteretic over a range of f2. 

KEY WORDS: Taylor-Couette  flow; Coriolis force; Taylor vortices; tilted 
vortices; chaotic vortices; traveling vortices; spatially ramped control parameter; 
featureless turbulence. 

1. I N T R O D U C T I O N  

In the study of hydrodynamic stability in the presence of external fields, 
Coriolis and magnetic effects are of particular interest because they occur 
frequently in nature, and because they can profoundly influence flows. In 
this paper we report on a study of the effect of a Coriolis force, which is 
present when the fluid system is in a rotating frame. The rotation often 
inhibits the instability and alters the nonlinear state beyond the bifurcation. 
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Rayleigh-B6nard convection (t'2)'2 (RBC) in a fluid heated from below and 
rotated about  a vertical axis is a system which has received significant 
theoretical(4 6) and experimental (v 10) attention in this field. Here we report  
upon  the effect of external rotat ion upon Taylor-vortex flow (11)'3 (TVF). 
This flow occurs as the result of an instability of circular Couette  flow, (14~ 
i.e., in a fluid contained between two concentric cylinders with one or  both  
of them rotating. When these cylinders are placed in a rotating frame, with 
the additional rotat ion axis or thogonal  to the cylinder axes, a Coriolis 
force acts upon  the fluid due to the coupling between the external rotat ion 
and the azimuthal  flow in the Couette  state. It was suggested to one of us 
by P. Marcus  4 that this system should have interesting properties because 
the Coriolis force breaks the cylindrical symmetry which prevails for TVF 
in a stat ionary frame. 

The TVF system in a rotat ing frame was investigated recently in 
experiments by Wiener eta/ .  (15'16) Their work aimed primarily at exploring 
the similarities to RBC in the presence of rotation, and at determining the 
details of the stability behavior  in nar row-gap geometries (radius ratio of 
0.883 and 0.950). It was reported (15) that the stabilizing effect of the rota- 
tion on the first instability had a similar dependence upon the external 
rotat ion rate g? as the theoretical (4~ and experimental (9) results for rotat ing 
RBC, and that above a certain value of (2 the base flow lost its stability, 
via a direct transition to turbulence without  any precursor instabilities 
when the inner-cylinder rotat ion rate co was increased. 'q6) The experiment 
was carried out  in an apparatus  with an axially uniform gap between the 
two concentric cylinders, and it was observed that the transition to 
turbulence was triggered by the irregular flows generated at the fixed end 
boundaries. (~ 7) 

F r o m  a theoretical viewpoint, TVF with a Coriolis force has been 
examined only very recently. Brand (~8~'5 and Wiener eta / .  (16) independently 
calculated corrections to the circular Couette  state to first order in f2. 
Wiener et al. are continuing this work to higher order. (~9~'6 Ning et al. ~2~ 

calculated this base flow to order f22, and also determined its stability to 

2 A large literature pertaining to this field has evolved. Particularly useful as introductions to 
early work are the reviews in refs. 3. 

3A sizable literature now exists dealing with this system. A comprehensive review has been 
given by DiPrima and Swinney. 1~21 Important early papers in this field are numerous; but 
particularly noteworthy are refs. 13. 

4 p. S. Marcus, private communication to G.A., January 30, 1987. 
5 This work was presented at the First Symposium on G6rtler-Vortex Flows, cochaired by 

H. Peerhossaini and J.E. Wesfreid, Euromech 261 and NATO ARW, June 11-14, 1990, 
Nantes, France. 

6 These authors also plan to carry out a stability analysis. 
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order 12 2. The theoretical results of Ning et al. are compared with the 
experimental measurements in another publication.(21~ In the present paper 
we present our experimental work in somewhat greater detail, and make 
only a very brief comparison with the theory. 

In part, the purpose of our experiment was to answer the question of 
whether the reported direct transition to turbulence was a bulk property or 
a boundary effect. If the former were true, then we would have a system 
which had turbulent states evolving directly from a relatively simple base 
state, perhaps suitable for a quantitative study of the turbulent onset under 
conditions of weak nonlinearity. To achieve this purpose, we employed 
Couette systems with two identical spatially-ramped outer-cylinder sections 
attached one to each end of a straight central outer-cylinder section. The 
ramps provided "soft" boundary conditions by smoothly decreasing the 
Reynolds number as a function of axial position below its critical 
value.(22 241 This nearly eliminated phase pinning and the influence of the 
Ekman vortices which exist at the ends. It also permitted the tilted vortices 
which form above the first bifurcation at modest rotation rates to assume 
their natural tilt angle, unimpeded by the vertical collars at the ends. The 
other purpose of our investigation was to extend the available quantitative 
information about the bifurcation lines and the system properties to a 
smaller radius ratio than those of Wiener e ta l .  ~15'161 Here we were 
particularly interested in modest rotation rates where a comparison with 
parallel theoretical work (2~ seems feasible. 

2. A P P A R A T U S  A N D  EXPERIMENTAL M E T H O D  

In our investigations, two concentric cylinders were placed, with their 
axes horizontal, on a table rotating about a vertical axis. The outer cylin- 
der was always stationary except for the overall table rotation. The inner 
one rotated about its axis. The inner cylinder had a constant radius inde- 
pendent of axial position and was the same for all of our experiments. We 
used three different outer cylinders, to which we will refer as apparatus I, 
II, and III. Apparatus I had an outer cylinder of uniform radius. The outer 
cylinder of apparatus II had ends consisting of inwardly tapered sections in 
which the inner diameter decreased linearly away from the end of the 
straight section with a ramp angle of 0.014 rad. In apparatus III we used 
double-parabolic ramps with the profiles shown schematically in Fig. 1. 
The larger-diameter ends of the ramped sections were glued to the straight 
center section. In all cases, the outer ends of the ramped sections of the 
apparatus were terminated by rigid, nonrotating collars, which essentially 
filled the gap. The radius ratios of the cylinders were close to 0.75 in the 
straight section. The geometric parameters of the three apparatus are sum- 

822/64/5-6-3 
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Fig. 1. Schematic diagram of the double-parabolic ramps of apparatus III. 

marized in Table I, where r is the radius, d is the gap between the two 
cylinders, l is the length of the section, superscripts i and o stand for inner 
and outer cylinder, respectively, and subscripts 0 and t denote parameters 
in the straight and tapered sections, respectively. 

The two control  parameters in this experiment are the Reynolds 
number  associated with the inner-cylinder rotat ion and the dimensionless 
angular frequency f2 of the table rotation. 7 They are defined as R = rio(Stg/do 
and f2 = ~2tg, respectively. Here (5 and O are the angular speeds, in rad/sec, 
of the inner cylinder and the table, respectively, tg = d~/v,  d o = r ; - r i o ,  and 
v is the kinematic viscosity of the fluid. 

The working temperature was near 22~ and the fluid was 98 % water 
seeded with 2 %  by volume Kalliroscope suspension 8 (see also ref. 25) to 
visualize the flow. Taking into considerat ion the effect I26) of the 
Kalliroscope on v, the viscosity was 0.0092 cm2/sec. Thus, tg w a s  43, 41, 
and 49 sec for apparatus  I, II, and III ,  respectively. The temperature of the 
fluid was measured with a resolution of better than 0.001 K using ther- 
mistors imbedded in stainless steel tubes and immersed in the fluid at both 

7 In refs. 15 and 16 a Taylor number was defined as equal to 4~22. A different Taylor number 
is often used to describe the inner-cylinder rotation rate (for which we are using R in the 
present paper). In order to avoid confusion, we prefer not to use an additional Taylor 
number for the table rotation rate. 

8 Kalliroscope Corporation, P.O. Box 60, Groton, Massachusetts, rheoscopic liquid AQ-1000. 

Table I. Dimensions of the Apparatus 

Apparatus r~ (cm) d o (cm) rio/r~ lo (cm) l, (cm) Outer cylinder shape 

I 1.869 0.631 0.746 33.82 - -  Straight 
II 1.869 0.616 0.753 12.60 14.0 Linear ramps 

III 1.869 0.673 0.736 16.43 13.4 Parabolic ramps 
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ends outside the fixed collars. The measured temperature difference across 
the apparatus was no larger than 0.2 K at any time, and was reduced to 
typically less than 50 mK during the later stages of the investigation. Due 
to the difficulty of having a fixed-temperature bath on a rotating table, we 
chose to operate at the normal room temperature (which varied typically 
by less than 1 K) and to regulate ~ and (5 so as to keep Q and R constant. 
The temperatures were measured every 5 sec, the kinematic viscosity of the 
fluid was calculated using the averaged temperature, and the speeds of the 
driving motors were adjusted accordingly. Some measurements on spatial 
patterns were made on certain states prepared with the regulation. The 
same measurements were later performed on the same states after the 
regulation was turned off. There was much less scatter in the data acquired 
with regulation. 

The flow pattern was imaged by a video camera (Panasonic, model 
WV1460) mounted on the rotating table. The image was captured and 
digitized by a video-capture system (Chorus Data Systems, Inc., PC-EYE) 
housed in the controlling computer. For the determination of bifurcation 
points at constant s we initially chose a step size for (5 of 0.5 % of the 
estimated critical rotation rate and slowly ramped the inner-cylinder 
rotation rate from one step to the next with a typical ramp rate of (1/(5) 
d(5/dt < 0.02 (t is in units of tg). After waiting for a stationary state at each 
step (typically 10tg), one or more images were acquired. From each image, 
a one-dimensional array, or contour line, representing the intensity of the 
light reflected by the Kalliroscope as a function of axial position, was 
extracted by averaging a few adjacent image lines. In such a contour line 
for a TVF state, the dark portions represent radial inflow and outflow 
regions. The Fourier transform F of the contour line was computed. 
Near the wavenumber q of the pattern, ]FI grew sharply at the first 
appearance of the vortex structure, and the area Sq under the peak of IFI 
corresponding to q could be determined. Once Sq grew over a certain 
empirical threshold, we reduced the step size and quasistatically ramped 
down in smaller steps, measuring Su as before. We chose the onset of the 
instability of the structureless base flow as the point where a straight line 
fitted to Sq((5) intersected a baseline value S O determined below the 
bifurcation point by summing ]Ft over the same interval of wavenumbers 
used to determine Sq. An example of experimental values of Sq((5) is 
given in Fig. 2. An analogous method could be applied at constant (5 by 
determining Sq( (2 ). 

The spectral method described above also gave the wavenumber 
associated with the spatially periodic pattern. A similar technique was used 
to analyze time series of the signal measured at one spatial point, and gave 
the onset of time-dependent states and the corresponding frequencies. The 



932  Ning  et  al. 

0.6 

0.4 

0d 
Cd 
<:s 

o- 
0,2 

I I I 

o 
o o ~ 

' - ~  ~  I I 
0.92 0.94 

( r o d / s )  

I I 

I 
0.96 

Fig, 2. The area Sq under the peak of the absolute value of the Fourier transform F 
corresponding to the wavenumber q of the first instability, as a function of the inner-cylinder 
rotation rate ch. These data are for g2 ~ 5. The horizontal line is the threshold discussed in the 
text, and the other solid line is a fit to the five largest values. 

time dependence of the phase associated with the spatial period of the 
pattern was used to determine the velocity of traveling waves. In addition 
to the Fourier-transform techniques, examination of contour plots (a 
temporal sequence of contour lines plotted horizontally with a vertical 
displacement of successive ones) was often useful for the determination and 
display of the pattern. 

By placing the center of apparatus II at a position on the table which 
was on the one hand a distance of about 25 cm from the table center, and 
on the other coincident with the table center, we confirmed experimentally 
the expectation that the centrifugal acceleration does not influence the 
system significantly. In the two cases, the bifurcations from a structureless 
base flow to a spatially nonuniform secondary flow agreed with each other 
within our experimental uncertainty ( _+ 0.25 %) for a range of ~ from 0 to 
50. There also was no visual difference in the flow patterns which formed 
above the bifurcation. Most of our measurements were made with the 
on-center position of the apparatus. 

3. RESULTS 

In the remainder of this paper we describe our findings in the order of 
increasing R and ~. Our results are from the apparatus with linear ramps 
(apparatus II) unless otherwise mentioned. When a transition is described, 
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the changing parameter (R or s will be given, while the other one is 
implied to be fixed. It is worth pointing out that, since the critical 
wavenumber of the secondary flow varies with the table rotation rate, and 
since some of the secondary bifurcations are hysteretic, one can sometimes 
make different states at the same point in the parameter space by following 
different paths. In our experiment, the states were usually prepared by 
quasistatically ramping R up from below its critical value while keeping s 
fixed. Experimental results for the overall bifurcation diagram are given in 
Fig. 3. Figures 4 and 5 are enlargements of Fig. 3 showing special features. 

3.1. Small Q 

At small s (<8.5), the first transition upon increasing R was a bifur- 
cation from the structureless base flow to tilted Taylor vortices (STV or 
DTV in Fig. 3). The tilt direction reversed when the direction of either the 
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Fig. 3. Experimental results for the bifurcation lines in the Reynolds number -O  plane. This 
figure covers the entire range of our experiments; details are given in Figs. 4 and 5. The data 
are from apparatus II. The solid circles are a nonhysteretic primary bifurcation which leads to 
very slowly drifting tilted vortices (DTV) at small f2, and to time-periodic tilted vortices 
(PTV) or traveling tilted vortices (TTV) of much higher frequency for f2 > 8.5. The triangles 
for f 2 > 4 0  are a hysteretic primary bifurcation to structureless turbulence (ST) (open: R 
increasing; closed: R decreasing). The squares are a hysteretic secondary bifurcation to wavy 
tilted vortices (WTV) (open: R increasing; solid: R decreasing). The triangles for 4 < 12 < 10 
are a hysteretic secondary bifurcation between a chaotic tilted vortex state (CTV) and a 
steady tilted vortex state (STV). The diamonds are a secondary nonhysteretic bifurcation to 
time-periodic tilted vortices (PTV) which meets the primary bifurcation near f2 =- 8.5. 
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Details of the bifurcation lines for intermediate values of [2. The data are from 
apparatus II. The symbols are as in Fig. 3. 

inner-cylinder rotation or the table rotation was reversed, but remained the 
same when both rotation directions were changed. In this range of ,(-2, the 
critical Reynolds number R< is nearly a quadratic function of f2. This is 
consistent with the expectation that Rc is invariant under the transforma- 
tion f2 --, - f2 .  It is shown explicitly in Fig. 6, which gives R<, vs. f2< Those 
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Fig. 5. Details of the bifurcation lines at large ~q where there is a direct transition from the 
base state to a structureless turbulent state. The data are from apparatus II. The symbols are 
as in Fig. 3. 
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Fig, 6. The critical Reynolds number R C as a function of ff~2. The line through the data is a 

fit of Eq. (1) to the measurements with 122< 25. The data are from apparatus II. 

data are for apparatus II positioned with its center on the rotation axis. 
The results for 0.7 < 12 < 5 were fit to the function 

Rc = Rco { 1 + (12/12o)2 [- 1 + c(12/Q o)2 ] } (1) 

The line in the figure is the result of this fit. It gave Re0 = 86.21, 12o = 7.75, 
and c ~ -0.08. When equivalent results for R+(12) for apparatus II in the 
off-center position on the rotation table were analyzed similarly, they 
yielded Rco = 86.77, 120 = 7.60, and c ~ -0.07. The agreement between the 
two sets of data provides further quantitative evidence for the fact that the 
centrifugal acceleration is unimportant in this instability. The theoretical 
result (27) Rco=86.33 for r1=0.753 is in excellent agreement with our 
measurements. When the theoretical values (2~ of Rc(12) for 12 < 5 were fit 
to Eq. (1), they yielded 12o = 7.75 for q = 0.753, also in excellent agreement 
with the experiment. 

In Fig. 7, which gives 120 vs. r/, we plot our result for 12 o as a solid 
circle, and those of Wiener et al. (ls~ as open circles. The line in the figure 
is the theoretical result. (2~ The values of Wiener et al. are slightly below the 
theory. A reason for this may be that these authors, although they fitted an 
equation similar to Eq. (1) to their data, omitted the term of fourth order 
in 12. Such a fit would give an effective value of 12o slightly below the value 
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Fig. 7. The parameter f2 o in Eq. ( i )  as a function of the radius ratio r/. The data at ~/= 0.95 
and 0.88 are from ref. 15. The solid line is from ref. 20. 

relevant in the limit as s vanishes, because c > 0 for their radius ratios. 
Thus we believe that all experimental data agree with the theory within 
their allowed systematic and random errors. 

Without rotation, TVF and RBC are most nearly comparable in the 
narrow-gap limit. 9 For TVF with rotation, s vanishes in that case. (2~ On 
the other hand, for RBC one has ~a) s 30. Thus, we see that the two 
systems differ dramatically in their response to a Coriolis force. An impor- 
tant physical difference between the two systems is that in RBC the 
Coriolis force has no influence on the state below the primary bifurcation 
(conduction state), whereas in TVF the Coriolis force couples to the 
circular Couette flow and thus makes the base flow dependent upon s 

We have also measured the critical wavenumber qc(s at small s and 
those results are shown in Fig. 8. We see that qc decreases significantly with 
s In the RBC case, the opposite dependence is found, i.e., qc increases(4) 
with s The experiment suggests that the initial decrease of qc with s is 

9 The two systems are strictly equivalent (in the absence of rotation) in the narrow-gap limit 
and for the case where the inner and outer cylinders are rotated with the same angular 
speed. 
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Fig. 8. The critical wavenumber of the vortices in the axial direction as a function of #22. The 
data are from apparatus II. 

quadratic in 12. This is consistent with the expectation that qc as well as Rc 
is invariant under the transformation 12 ~ -12. 

An interesting feature of the nonlinear state immediately above the 
bifurcation and for 12 > 3 is that the tilted vortices in apparatus II and III 
drift at a very slow rate, with a period of order 100tg, from the ramps into 
the straight section (DTV in Fig. 3). In the interior of the straight section, 
one or two pairs of vortices disappear periodically. This is illustrated in 
Fig. 9, which is a contour plot for apparatus II of the straight section for 
12 = 4.0 and R/Rc - 1 -- 0.07. Preliminary results show that the drift velocity 
has a maximum as R increases, and then decreases to zero. We consider it 
unlikely that the drift of the vortices is a feature of the axially uniform 
system under external rotation. Rather, we expect that the drift is induced 
by the selection of an unstable state by the ramps at the two ends of the 
system. Although it is known that the ramps used in our apparatus select 
a stable state in the absence of rotation, (= 24) the selection of unstable 
states has been predicted theoretically (28) and found experimentally (29) for 
the case where both the inner and the outer cylinder radii vary axially. We 
presume that the rotation has altered the wavenumber selection so 
dramatically that the selected wavenumber is unstable just above the onset 
of vortex flow. This interesting phenomenon is under further investigation. 

As R is increased further in this range of 12, a second transition occurs 
from tilted vortices to wavy tilted vortices (WTV in Fig. 3). This transition 
takes place at rather high R for our radius ratio. For the radius ratios used 
by Wiener et al. (15) the wavy mode at small 12 occurs at much smaller R. 
In our system this secondary bifurcation is hysteretic in the presence of 
rotation. We have not made a direct determination of the azimuthal mode 
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Fig. 9. C o n t o u r  p lo t  of  the  dr i f t ing tilted vor t ices  in the center  s t r a igh t  sect ion of  

a p p a r a t u s  II for  ~2 = 4.0 a n d  R/R, - 1 = 0.07. The  t ime difference be tween  successive c o n t o u r  

lines is 1.4t~. T h e  dr i f t ing  waves  of vor t ices  en t e r ing  the sys tem f rom each  end  are  a p p a r e n t .  

They  p r o d u c e  a pe r iod ic  loss of  vor tex  pa i rs  in the in te r ior  of the s t r a igh t  section.  

number m of this wavy mode. However, the ratio between the frequency cow 
of this mode and the frequency (5 of the inner cylinder is about 0.8. Since 
the wavy-mode speed (co,,./(5)/m is usually between 0.3 and 0.5, (3~ we 
presume that rn is at least 2 and probably not 3. 

3.2. M e d i u m  Q 

At somewhat higher ~ (say from 5 to 15), the bifurcation sequence 
becomes more complicated. For f2 < 8.5 a bifurcation from tilted vortices 
(DTV or STV) to a time-periodic tilted vortex state (PTV in Fig. 3) follows 
closely after the initial transition. This is shown in detail by the open 
diamonds in Figs. 3 and 4. This state differs from the wavy mode (WTV) 
at smaller g? and large R which we discussed in the previous section, in that 
it has a relative frequency co,/& which is smaller by about a factor of two. 
Experimental results for o)+/(5 are shown in Fig. 10 to the left of the vertical 
line at f2 = 8.5. The open squares are for apparatus I, and the solid circle 
was obtained with apparatus II. The results agree well, and indicate that 
this mode is not significantly influenced by the nature of the cylinder ends. 
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Fig. 10. The ratio of the periodic tilted-vortex (PTV) frequency ~o+ or traveling tilted-vortex 
(TTV) frequency m~ to the inner-cylinder frequency 05 as a function of f2. Open squares: 
Apparatus I (straight ends). Solid circles: Apparatus II (linear ramps). The data to the left of 
the vertical line at Q = 8.5 are for PTV which form at the secondary bifurcation. The data to 
the right of that line are for the primary bifurcation. 

The secondary bifurcation to time-periodic tilted vortices becomes the 
first bifurcation at Q--8.5. For somewhat larger g?, the primary transition 
becomes one from structureless flow to traveling tilted vortices (TTV in 
Fig. 3). We emphasize that these time-periodic modes are unrelated to the 
drifting state (DTV) encountered at smaller s and discussed in the 
previous section. For the mode under discussion in the present section 
(TTV) the vortices are traveling in the same direction throughout the 
system, whereas the drifting waves at smaller g? were moving in opposite 
directions at opposite ends of the apparatus (see Fig. 9). The frequencies ~o, 
of the traveling waves are two orders of magnitude larger than the frequen- 
cies of the drifting vortices at small f2. The traveling-wave frequency co, 
evolves, within experimental resolution, continuously as a function of g? 
from the frequency co, of the periodic tilted vortices. This is shown in 
Fig. 10. It is possible to prepare a state of traveling vortices which 
propagates in either direction, and we thus regard this bifurcation as a 
Hopf bifurcation. Since the frequency and bifurcation line of the PTV are 
continuous with those of the TTV, we presume that the secondary bifurca- 
tion to PTV is also a Hopf bifurcation. This implies that there is a complex 
conjugate pair of eigenvalues acquiring positive real parts at the secondary 
bifurcation to PTV, and that these eigenvalues evolve continuously into the 
pair associated with the primary bifurcation to TTV as f2 is increased. The 
relative stability of traveling vs. standing waves will be determined by non- 
linear interactions and cannot be decided from linear stability analysis. We 
note that this situation is very different from that encountered in wavy 
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TVF. In that case the waves are azimuthal and only travel in the direction 
of the inner-cylinder rotation. They correspond to a single complex eigen- 
value acquiring a positive real part, and thus we do not believe that the 
PTV discussed here are directly related to wavy vortex flow. This interest- 
ing bifurcation problem is under further investigation. 

Upon increasing R further in this range of (2 (5 to 15), the pattern 
undergoes a transition to a chaotic state (CTV in Fig. 3). At even larger R, 
the flow returns through a hysteretic transition, shown in Figs. 3 and 4 as 
triangles, to a ti0ae-independent tilted vortex state. This hysteretic trans- 
ition was investiga~d at fixed R by varying s The chaotic vortices occur 
away from the ends and only exist in the central portion of apparatus II 
and III. This excludes the possibility that the transition is induced by the 
fixed boundaries. At the large-f2 end of this transition, the flow becomes 
generally turbulent even within the vortex structure itself, and we aborted 
the effort to locate the transition. 

3.3. Large Q 

Upon increasing .(2 to above 15, the state above the primary bifurca- 
tion becomes more and more irregular, and the bifurcation gradually 
becomes a direct transition to (visually) structureless turbulence (ST in 
Fig. 3). This turbulent state is different from those observed in Taylor 
Couette flow without external rotation in that the latter still possess the 
Taylor-vortex structure, and the turbulence is on a smaller scale (see ref. 12 
for a recent review). In the turbulent state observed here there is no large- 
scale structure, such as that of vortices, discernible. We observed that the 
transition from the laminar to the turbulent state becomes hysteretic for a 
range of s in the apparatus with either kind of ramp (apparatus II and 
III). We have not observed hysteresis in apparatus I. The hysteresis is 
illustrated in Fig. 5 for the case of apparatus II (linear ramps). The sizes 
and ranges of the hysteresis are qualitatively the same for the two different 
ramps, but depend quantitatively on the detailed shapes of the ramps. 
Although it is consistently found that the onset of the turbulence is 
triggered by the irregular flows which at these large values of s are 
generated at the fixed boundaries and which propagate into the bulk flow 
from the ends, in apparatus III (with doubly parabolic ramps) the flow 
near the ends of the apparatus is observed to be laminar when the bulk 
flow is turbulent after R is decreased from the onset of turbulence into the 
hysteretic region. Also the lower boundary of the hysteresis (in the ~ R 
plane) smoothly joins the bifurcation line at higher and lower Q within the 
experimental uncertainty. This evidence suggests that the turbulence is 
likely to be a bulk property of the flow. 
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At yet higher (2 (~2 > 85), the flow becomes rather complicated even in 
the base state. We aborted the effort to determine the bifurcation behavior 
for this portion of the parameter  space. 

Figure 11 shows a logarithmic plot of R C vs. ~2 for the lowest bifurca- 
tion as measured in each of the three apparatus. Within our possible 
systematic errors, R , ( Q )  is the same for the three outer cylinders used in 
our work. Contrary to the original expectations of Wiener et al., ~15> no 
asymptotic power-law behavior is evident at high ~2. If we nevertheless 
extract an a d h o c  effective exponent from the data at large .(2 (say 
45 <g2 < 200), we obtain about  0.61. Previous work (15) had indicated that 
the data for f2 < 12 were consistent with the value 4/3 obtained theoreti- 
cally (4) for RBC with rotation. The more recent data of Wiener et al. It61 for 
f2 up to 22 and for r /= 0.883 have also shown a slower increase of R++ with 
Q than had originally (is> been expected. Thus, TVF with a Coriolis force 
differs from the prediction (4~ for RBC with a Coriolis force. We do not 
know of any reason why the two systems should behave similarly. In the 
RBC case, the theoretical analysis (4) is based upon the assumption that a 
particular wavenumber first acquires a positive growth rate. m In the TVF 
case at large f2 we know from experiment that there is no well-defined 

lo One of us (G.A.) is grateful to H. R. Brand for discussions of this issue. 
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Fig. 11. Data for the primary bifurcation from all three apparatus on double logarithmic 
scales. Diamonds: Apparatus I. Solid circles: Apparatus II. Open circles: Apparatus III. 
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wavenumber, since the first state beyond the bifurcation is a featureless 
turbulent state. In addition, as mentioned above, the Coriolis force has a 
strong effect on the base state for TVF, but has no such effect in the RBC 
system. The data in Fig. 11 also indicate that there is at least one discon- 
tinuity in the slope of Re(f2), namely near f2 = 42. It is beyond this value 
of f2 that the first bifurcation leads to the structureless turbulent state. 
Although not clearly resolved by our data, we expect that there is also a 
slope discontinuity near f2 = 8.5 where the bifurcation line to STV or DTV 
meets the Hopf bifurcation line to PTV or TTV. 

4. S U M M A R Y  

We have presented quantitative experimental results for Taylor-vortex 
flow with rotation about an axis orthogonal to the cylinder axes. We made 
measurements in three apparatus which differed in the way in which the 
ends were terminated. In two of them, spatial ramps provided a gradual 
decrease in the axial direction of R below the critical value, and the other 
had an axially uniform geometry. Our apparatus had a radius ratio q close 
to 0.75. Our results are consistent with those of Wiener eta/. (15'161 at larger 
values of r/. In parallel to the experimental work, Ning e t  al. have 
calculated the linear properties at the primary bifurcation in this system as 
a function of the external rotation rate f2. (2~ The theoretical results agree 
very well with all available experimental data for R~(Q) at small values of 
s A more detailed comparison between experiment and theory has been 
presented elsewhere. (2~) The excellent agreement indicates a quantitative 
understanding of the primary bifurcation at small f2, and opens the way for 
future detailed studies of a number of interesting phenomena which occur 
in this system. These phenomena include unexpected unstable wavenumber 
selection by spatial ramps which lead to drifting tilted vortices (DTV) near 
the onset of vortex flow, a secondary Hopf bifurcation to a time-periodic 
tilted vortex state (PTV), and a primary bifurcation to a traveling wave of 
tilted vortices (TTV). Particularly intriguing is the existence of a codimen- 
sion-two point where the primary bifurcation to drifting or steady tilted 
vortices (DTV or STV) meets the Hopf bifurcation line to periodic or 
traveling (PTV or TTV) tilted vortices. At higher f2, we have confirmed the 
existence of a turbulent state without any vortex structure (ST) which was 
discovered by Wiener e t  al. (16'~7) We find that the transition to this state is 
hysteretic when the apparatus has spatial ramps at each end, and that for 
some parameter values the turbulence can be sustained even when the 
ramps provide a laminar region between the interior straight part of the 
system and the ends. 
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